An adenylyl cyclase with a phosphodiesterase domain in basal plants with a motile sperm system
نویسندگان
چکیده
Adenylyl cyclase (AC), which produces the signalling molecule cAMP, has numerous important cellular functions in diverse organisms from prokaryotes to eukaryotes. Here we report the identification and characterization of an AC gene from the liverwort Marchantia polymorpha. The encoded protein has both a C-terminal AC catalytic domain similar to those of class III ACs and an N-terminal cyclic nucleotide phosphodiesterase (PDE) domain that degrades cyclic nucleotides, thus we designated the gene MpCAPE (COMBINED AC with PDE). Biochemical analyses of recombinant proteins showed that MpCAPE has both AC and PDE activities. In MpCAPE-promoter-GUS lines, GUS activity was specifically detected in the male sexual organ, the antheridium, suggesting MpCAPE and thus cAMP signalling may be involved in the male reproductive process. CAPE orthologues are distributed only in basal land plants and charophytes that use motile sperm as the male gamete. CAPE is a subclass of class III AC and may be important in male organ and cell development in basal plants.
منابع مشابه
اندازهگیری فعالیت آدنیلیل سیکلاز غشاء سلولی در حضور پروتئین کموتاکسیک ماکروفاژ
Adenylyl cyclase is a membrane-bound enzyme that catalyzes the conversion of ATP to cAMP. The inhibition of adenylyl cyclase was carried out by measuring the ability of the macrophage chemotactic protein-1 to inhibit the forskolin-induced enzyme activity. Measurement of adenylyl cyclase activity was performed according to the procedure described by Wiegn. Adenylyl cyclase activity in the pres...
متن کاملControl of cAMP in lung endothelial cell phenotypes. Implications for control of barrier function.
Pulmonary microvascular endothelial cells (PMVECs) form a more restrictive barrier to macromolecular flux than pulmonary arterial endothelial cells (PAECs); however, the mechanisms responsible for this intrinsic feature of PMVECs are unknown. Because cAMP improves endothelial barrier function, we hypothesized that differences in enzyme regulation of cAMP synthesis and/or degradation uniquely es...
متن کاملCalcium-independent and cAMP-dependent modulation of soluble guanylyl cyclase activity by G protein-coupled receptors in pituitary cells.
It is well established that G protein-coupled receptors stimulate nitric oxide-sensitive soluble guanylyl cyclase by increasing intracellular Ca(2+) and activating Ca(2+)-dependent nitric-oxide synthases. In pituitary cells receptors that stimulated adenylyl cyclase, growth hormone-releasing hormone, corticotropin-releasing factor, and thyrotropin-releasing hormone also stimulated calcium signa...
متن کاملDeducing the origin of soluble adenylyl cyclase, a gene lost in multiple lineages.
The family of eukaryotic adenylyl cyclases consists of a very large group of 12 transmembrane adenylyl cyclases and a very small group of soluble adenylyl cyclase (sAC). Orthologs of human sAC are present in rat Dictyostelium and bacteria but absent from the completely sequenced genomes of Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana, and Saccharomyces cereviciae. sAC c...
متن کاملGuanylyl cyclases across the tree of life.
This review explores the origins, diversity and functions of guanylyl cyclases in cellular organisms. In eukaryotes both cGMP and cAMP are produced by the conserved class III cyclase domains, while prokaryotes use five more unrelated catalysts for cyclic nucleotide synthesis. The class III domain is found embedded in proteins with a large variety of membrane topologies and other functional doma...
متن کامل